Tuesday, October 20, 2009

Bimasakti Ternyata Semakin Ramping

Peneliti dari SDSS menggunakan data gerak bintang jauh untuk menentukan massa Bimasakti. Kredit Gambar : SDSS
Peneliti dari SDSS menggunakan data gerak bintang jauh untuk menentukan massa Bimasakti. Kredit Gambar : SDSS

Galaksi Bimasakti telah kehilangan bobotnya. Tidak tanggung-tanggung ia kehilangan sekitar triliunan Matahari. Yang pasti ini bukan karena Bimasakti sedang diet sehingga ia menjadi lebih langsing melainkan lebih kepada akurasi skala. Masalah bobot inilah yang jadi penemuan Sloan Digital Sky Survey (SDSS-II) yang akan membawa kita pada pemahaman baru mengenai Bimasakti.

Menurut Xiangxiang Xue dari National Astronomical Observatories of China yang memimpin tim internasional dalam penelitian ini, galaksi jauh lebih ramping dari yang diduga. Artinya terdapat lebih sedikit materi kelam dari yang diyakini sebelumnya, dan tampaknya Bimasakti jauh lebih efisien dam mengubah persediaan hidrogen dan heliumnya jadi bintang.

Penemuan Xue tersebut didasarkan pada data SEGUE (Sloan Extension for Galactic Understanding and Exploration), survey bintang di Bimasakti yang merupakan satu di antara 3 program milik SDSS-II. Dengan menggunakan pengukuran SEGUE terhadap kecepatan bintang di bagian terluar Bimasakti, pada area yang disebut halo bintang, para peneliti menentukan massa galaksi dari jumlah gravitasi yang dibutuhkan untuk membuat bintang tetap stabil pada orbitnya. Sebagian gravitasi berasal dari bintang di Bimasakti namun sebagian besar garvitasi justru berasal dari distribusi materi kelam.

Untuk melacak distribusi massa galaksi, team SEGUE menggunakan contoh dari 2400 bintang yang ada pada cabang horisontal biru (”blue horizontal branch”). Bintang di cabang tersebut bisa diketahui jaraknya dari kecerlangannya. Bintang pada cabang horisontal biru bisa terlihat pada jarang yang sangat jauh sehingga memungkinkan tim ini mengukur kecepatan bintang sampai dengan jarak 180000 tahun cahaya dari Matahari.

Hasil penelitian massa Bimasakti yang ada sebelumnya menggunakan beragam contoh dari 50 – 500 objek, dan ditemukan total massa galaksi Bimasakti mencapai 2 triliun massa Matahari. Berbeda dari hasil sebelumnya, penelitian dengan menggunakan pengukuran SDSS-II sampai jarak 180000 tahun cahaya justru mengkoreksi total massanya yakni berkurang sampai di bawah 1 triliun massa Matahari. Ukuran SEGUE yang besar memberi keuntungan, karena bisa dipilih set pelacak yang seragam dan sejumlah besar bintang yang ada bisa dipakai untuk mengkalibrasi metode yang digunakan dengan hasil simulasi.

Menurut kolaborator Timothy Beers dari Michigan State University, memang tidak mudah untuk menentukan massa total galaksi karena kita berada di dalam galaksi itu sendiri. Namun kita bisa mengetahuinya dari data yang ada jika kita ingin mengetahui dan memahami Bimasakti dan kemudian kita bisa membandingkannya dengan galaksi jauh yang bisa kita lihat dari luar.

Sumber : SDSS

Mengintip Pola Makan Lubang Hitam

Galaksi spiral M81. Kredit Gambar : X-ray: NASA/CXC/Wisconsin/D.Pooley and CfA/A.Zezas; Optical: NASA/ESA/CfA/A.Zezas; UV: NASA/JPL-Caltech/CfA/J.Huchra et al.; IR: NASA/JPL-Caltech/CfA
Galaksi spiral M81. Kredit Gambar : X-ray: NASA/CXC/Wisconsin/D.Pooley and CfA/A.Zezas; Optical: NASA/ESA/CfA/A.Zezas; UV: NASA/JPL-Caltech/CfA/J.Huchra et al.; IR: NASA/JPL-Caltech/CfA

Bagaimana sebuah lubang hitam raksasa makan? Ternyata pola makan lubang hitam terbesar bisa jadi sama saja dengan lubang hitam yang kecil. Tak percaya? Inilah data terbaru dari Chandra X-ray Observatory milik NASA dan teleskop landas bumi. Penemuan ini mendukung teori relativitas Einstein yang menyatakan lubang hitam dengan berbagai ukuran memiliki sifat yang mirip dan akan berguna dalam penentuan sifat konjektur kelas lubang hitam yang baru.

Kesimpulan tersebut dihasilkan setelah dilakukan perbandingan antara lubang hitam raksasa di galaksi spiral M81 dengan lubang hitam berukuran massa bintang.

Galaksi spiral M81, yang berada pada jarak 12 juta tahun cahaya dari bumi memiliki sebuah lubang hitam masif yang massanya 70 juta massa Matahari. Lubang hitam tersebut menghasilkan energi dan radiasi saat ia menarik gas pada area pusat galaksi ke arah dalam dengan kecepatan tinggi.

Di sisi lain, lubang hitam yang kecil yang massanya 10 kali massa Matahari, memiliki sumber makanan yang berbeda. Lubang hitam kecil ini memperoleh materi baru dengan menarik gas dar bintang pasangan yang sedang mengorbit. Ternyata lubang hitam besar dan kecil memiliki lingkungan yang berbeda dengan sumber materi makanan yang berbeda pula. Pertanyaannya, di mana letak kesamaan keduanya saat makan?

Dengan menggunakan hasil observasi terbaru dan detail teori yang ada, dilakukan perbandingan antara sifat lubang hitam di M81 dengan lubang hitam dengan massa bintang. Hasilnya, besar ataupun kecil, lubang hitam tampak makan dengan cara yang sama, dan menghasilkan distribusi yang mirip dari sinar X, cahaya optik dan cahaya radio.

Implikasi yang didapat dari teori relativitas umum milik Einstein dari kasus ini adalah, lubang hitam adalah objek sederhana. Hanya saja massa dan spin dari lubang hitam ini akan menentukan efek mereka dalam ruang-waktu. Riset terbaru mengindikasikan kalau kesederhanaan tersebut terlihat, meskipun berada dalam efek lingkungan yang kompleks. Dan hasilnya, didapat konfirmasi juga, jika pola makan dari lubang hitam dalam berbagai ukuran bisa sangat mirip.

Menurut Michael Nowak dari Massachusetts Institute of Technology, setelah melihat data yang ada ternyata model yang mereka miliki cocok, baik untuk lubang hitam raksasa di M81 maupun untuk lubang hitam lainnya yang kecil. Semua yang ada di sekeliling lubang hitam raksasa tampak sama dengan yang kecil, kecuali ukurannya yang 10 juta kali lebih besar.

Dan di antara lubang hitam yang sedang aktif untuk makan, lubang hitam di M81 merupakan salah satu yang paling redup. Diperkirakan hal ini terjadi karena ia masih kekurangan makanan. Namun, walaupun lubang hitam ini kurang makan, ia merupakan salah satu yang paling terang terlihat dari Bumi karena letaknya yang relatif dekat, sehingga hasil observasi dengan kualitas tinggi bisa didapat.

“Tampaknya lubang hitam yang kurang makan sangat sederhana dan praktis, mungkin karena kita bisa melihat ke lubang hitam itu lebih dekat,” kata Andrew Young dari University of Bristol di Inggris. Ia juga menyebutkan kalau lubang hitam tersebut tampaknya tidak terlalu peduli dari mana mereka mendapatkan makanannya.

Pekerjaan ini juga akan sangat berguna untuk menentukan sifat kelas ketiga yang belum dikonfirmasikan , yang disebut sebagai kelas massa menengah lubang hitam, dengan massa yang berada di antara batas massa bintang dan lubang hitam supermasif. Walau belum dikonfirmasikan, beberapa kandidat penghuni kelas ini sudah teridentifikasi, meskipun buktinya masih merupakan kontroversi. Dengan demikian, diharapkan melalui penemuan baru ini prediksi yang lebih spesifik bisa dilakukan dalam menentukan sifat kelas lubang hitam tersebut.

Pengamatan lubang hitam di galaksi spiral M81 dilakukan oleh Chandra X-ray Observatory, 3 teleskop radio (the Giant Meterwave Radio Telescope, the Very Large Array and the Very Long Baseline Array), 2 teleskop milimeter (the Plateau de Bure Interferometer and the Submillimeter Array) dan Lick Observatory. Pengamatan tersebut dilakukan secara simultan untuk memastikan perubahan cahaya yang terjadi sebagai akibat laju makan lubang hitam. Selain itu, Chandra merupakan satelit sinar-X satu-satunya yang dapat mengisolasi sinar X lemah milik lubang hitam dari emisi lainnya di galaksi tersebut.

Sumber :NASA’s Chandra Website

Samakah Hukum di Bumi dan di Galaksi Lain?

Pengujian hukum alam di galaksi jauh untuk melihat apakah hukum alam berlaku sama di semua tempat di alam semesta ini dan sama pada waktu yang berbeda pula. Kredit Gambar : Telescope: N. Junkes; Radio insets: A. Biggs; Intervening galaxy: NASA, ESA, STScI & W. Keel; Quasar: NASA, ESA, STScI & E. Beckwith
Pengujian hukum alam di galaksi jauh untuk melihat apakah hukum alam berlaku sama di semua tempat di alam semesta ini dan sama pada waktu yang berbeda pula. Kredit Gambar : Telescope: N. Junkes; Radio insets: A. Biggs; Intervening galaxy: NASA, ESA, STScI & W. Keel; Quasar: NASA, ESA, STScI & E. Beckwith

Hukum alam di seluruh penjuru alam semesta ternyata sama saja dengan yang ada di Bumi. Kesimpulan ini didapat oleh tim astronom yang melakukan penelitian, termasuk di dalamnya Chrisian Henkel dari Max Planck Institute for Radio Astronomy (MPIfR) di Bonn. Hasil penelitian mereka menunjukkan, angka perbandingan proton -elektron, hampir sama di Galaksi yang jaraknya 6 milyar tahun cahaya dengan yang ada di laboratorium di Bumi, yakni mendekati 1836,15

Menurut Michael Murphy, astrofisikawan dari Swinburne, penemuan ini sangat penting karena sampai saat ini masih terjadi perdebatan apakah hukum alam akan berubah pada waktu dan tempat yang berbeda di alam semesta ini. Dengan adanya penelitian ini, bisa terbukti, hukum alam di Galaksi jauh ternyata sama degan hukum alam di Bumi.

Bagaimana kesimpulan ini bisa didapat? Para astronom melakukan penentuan rasio massa proton-elektron itu dengan melihat kembali ke masa lalu pada quasar jauh, B0218+367. Cahaya quasar tersebut ternyata membutuhkan waktu 7,5 milyar tahun untuk mencapai kita, dan sebagian cahaya tersebut juga telah diserap oleh gas amonia galaksi yang ia lewati.

Amonia yang dalam kehidupan sehari-hari kita kenal berguna untuk membersihkan toilet, ternyata merupakan molekul ideal untuk menguji pemahaman fisika di alam semesta. Observasi spektroskopi terhadap molekul amonia dilakukan dengan teleskop radio Effelsberg 100 meter pada panjang gelombang 2 cm (pergeseran merah 1,3 cm dari panjang gelombang asal). Panjang gelombang di mana amonia menyerap energi radio dari quasar ternyata menunjukan sensitivitas pada angka fisika nuklir, yakni perbandingan massa proton-elektron.

Dengan melakukan perbandingan terhadap penyerapan yang dilakukan amonia dengan penyerapan dari molekul lain, didapatkan perbandingan massa proton-elektron di galaksi tersebut. Dan ternyata, perbandingannya sama dengan yang ada di Bumi.

Penelitian ini akan terus dilanjutkan dengan meneliti hukum alam di galaksi lainnya untuk waktu yang berbeda, sehingga akan tampak apakah hukum alam tersebut akan tetap bertahan di tempat-tempat yang baru tersebut. Dengan penelitian yang akan terus berlanjut ini, para peneliti berharap bisa menemukan jendela menuju dimensi lain di ruang angkasa, yang secara teoretis dinyatakan mungkin ada.

Sumber : Max Planck Institute for Radio Astronomy

Bahwa Alam Semesta Sudah Tua

Banyak cara yang berbeda satu sama lain digunakan untuk menjelaskan berapa umur semesta, dan walaupun berbagai metodologi itu dilakukan secara terpisah, tetapi memberikan gambaran yang berkesesuaian satu sama lain untuk menjelaskan umur semesta ini secara obyektif. Demikian dibawah ini akan diperkenalkan beberapa jalinan metode tersebut.

Umur Alam Semesta Yang Mengembang

Model alam semesta setelah ledakan besar. Kredit : NASA/WMAP Science Team
Model alam semesta setelah ledakan besar. Kredit : NASA/WMAP Science Team

Jarak galaksi dapat ditentukan dari ukuran yang tampak atau kecerlangannya. Galaksi yang tampak lebih kecil dan lebih redup dari galaksi lain yang serupa, berarti berjarak lebih jauh. Jarak juga bisa ditentukan menggunakan penanda jarak yang lain, seperti beberapa jenis bintang. Selain jarak, laju galaksi bergerak bisa dtentukan dengan pengetahuan spektrum-nya. (Spektrum cahaya dari galaksi adalah apabila kita memecah cahaya menjadi komponen warna-nya seperti pelangi). Dengan pengetahuan spektrum cahaya bisa memberikan identitas obyek apa yang diamati, maupun bagaimana obyek diamati bergerak, karena setiap spektrum obyek yang berbeda memberikan pola yang unik.

Christian Doppler di tahun 1842 menunjukkan bahwa ketika sumber cahaya bergerak, gerakan tersebut menyebabkan mengubah gelombang, mengubah warna yang dilihat pada spektrum. Efek ini dikenal sebagai efek Doppler. Pengetahuan tentang efek Doppler ini memberitahu kita apakah suatu sumber cahaya mendekati atau menjauhi kita. Dari sini kita bisa mengetahui bagaimana benda-benda langit bergerak terhadap kita sebagai pengamat di Bumi, dan berapa cepat pergerakannya.

Di tahun 1920-an, Edwin Hubble menemukan bahwa galaksi – galaksi bergerak terhadap kita dengan pola tertentu. Semakin jauh galaksi dari kita, semakin cepat pergerakannya. Pola ini yang dikenal sebagai “alam semesta mengembang”, karena pola perilaku ini terlihat pada semua arah di langit. Jadi bisa saja dianggap bahwa semua galaksi bergerak menjauhi galaksi Bima Sakti, tetapi tidak bisa dikatakan begitu saja bahwa Bima Sakti sebagai pusat semesta, karena pola yang sama bisa saja teramati oleh pengamat yang berada di galaksi yang lain. Jadi tidak serta merta disimpulkan dari pekerjaan Hubble bahwa kita berada pada pusat semesta atau kita berada pada posisi yang istimewa dalam semesta.

Kembali pada pengukuran pergeseran cahaya yang teramati, ahli astronomi mencoba mengukur berapa lama pengembangan telah terjadi. Jika diasumsikan bahwa semua galaksi berangkat dari titik awal yang sama, maka bisa dideduksi, berapa jauh yang telah ditempuh suatu galaksi dan berapa kecepatan tempuhnya, kemudian membagi jarak terhadap laju. Dengan menambahkan faktor – faktor fisis yang realistis seperti adanya pengaruh gravitasi, atau adanya inflasi alam semesta, umur semesta diperoleh antara 12 sampai 14 milyar tahun.

Umur Bintang Paling Tua
Bagaimana bintang bisa menyala? Bagaimana menentukan umurnya? Berapa lama bintang dapat menyala? Bintang (termasuk Matahari) dapat bersinar karena adanya proses termonuklir di dalamnya, yang berfungsi sebagai generator pembangkit energi, akibat perubahan hidrogen menjadi helium; akibat panas dan tekanan yang sangat intens dalam inti bintang, inti hidrogen ber-fusi menjadi inti helium dan energi yang terpancarkan. Proses fisis ini bisa digunakan untuk mengukur umur bintang.

Fisika nuklir bisa menjelaskan berapa banyak energi yang dihasilkan dari fusi setiap atom hidrogen. Diketahui berapa banyak hidrogen panas dalam inti bintang, dan berapa cepat bintang menggunakan energinya untuk bersinar. Dengan demikian bisa dihitung berapa lama bintang bersinar sebelum kehabisan seluruh bahan bakarnya. Jika bintang telah kehabisan hidrogen di intinya, bintang berubah menjadi ‘raksasa merah’. Ketika kita menemukan adanya bintang raksasa tersebut, bisa ditentukan massa awalnya, tenaga awalnya, dan kala hidupnya dapat ditentukan. Demikian setelah diukur berbagai bintang yang telah tua tersebut, diperoleh dari metode ini umur semesta berkisar antara 10 – 15 milyar tahun.

Umur Cahaya Dari Galaksi Terjauh
Sebagaimana yang telah diungkap tentang jarak dalam ‘tahun cahaya’, pengamatan memberikan informasi tentang galaksi yang sangat jauh, sehingga yang cahaya dikirimkan oleh galaksi tersebut butuh milyaran tahun untuk mencapai pengamat. Dari hal tersebut, sepertinya kita sedang menggunakan mesin waktu, ketika kita mengamati langit, kita mengamati peristiwa yang telah terjadi di waktu yang telah berlalu. Pengamatan dari Hubble Space Telescope memberikan jarak terjauh galaksi yang teramati mencapai 10 milyar tahun cahaya, dengan demikian paling tidak semesta kita ini telah berumur 10 milyar tahun.

Umur Komposisi Kimia
Setelah ledakan besar awal (big bang), semesta tersusun dari elemen – elemen paling sederhana, yaitu hidrogen dan helium. Galaksi yang sangat-sangat jauh merupakan bukti bahwa hal ini memang demikian adanya, karena memiliki komposisi hidrogen dan helium yang jauh lebih besar. Komposisi kimia yang lebih kompleks dari hidrogen dan helium terbentuk kemudian akibat reaksi nuklir dalam inti bintang, atau ketika bintang yang sangat masif berakhir nasibnya dalam ledakan besar (supernova). Di dalam supernova yang teramati, terdapat elemen kimia yang terbentuk setelah 10-20 milyar tahun.

Paling tidak ada empat metode yang saling independen dipergunakan untuk menentukan umur alam semesta, kendati tidak tepat sama, tetapi paling tidak menunjukkan adanya kesesuaian, umur semesta sudah lebih dari 10 milyar tahun. Dan semua astronom sependapat dan berkeyakinan, bahwa semesta, semua galaksi, bintang-bintang benar-benar sudah tua dan telah tercipta di suatu masa yang sangat lampau.

Kesabaran 16 Tahun Berbuah Monster di Jantung Bima Sakti

Area pusat galaksi Bima Sakti. Kredit : ESO
Area pusat galaksi Bima Sakti. Kredit : ESO

Setelah melakukan studi panjang selama 16 tahun menggunakan teleskop milik ESO, tim astronom dari Jerman berhasil memperlihatkan kondisi paling detil yang pernah ada dari area di sekitar jantung galaksi Bima Sakti – area dari monster menakutkan si lubang hitam supermasif. Penelitian ini mengungkap rahasia yang tersimpan di area tersebut melalui pemetaan orbit 28 bintang. Bahkan satu bintang di antaranya telah berhasil melakukan putaran penuh mengelilingi lubang hitam.

Pengamatan gerak 28 bintang yang mengorbit area pusat galaksi Bima Sakti, menunjukan keberadaan lubang hitam supermasif yang tengah mengintip kita dari balik debu antar bintang. Ia dikenal sebagai Sagittarius A (atau dikenal sebagai bintang Sagittarius A). Berbagai informasi termasuk bentuk istimewa bintang-bintang tersebut dan juga lubang hitam yang mengikat mereka berhasil dikuak.

Pusat galaksi merupakan laboratorium yang unik dimana kita bisa belajar proses-proses dasar gravitasi yang besar dan kuat, serta dinamika dan pembentukan bintang yang memiliki keterkaitan yang sangat besar dengan inti galaksi. Disinilah pabrik kelahiran bintang dan tempat berlabuh sang monseter menakutkan, lubang hitam supermasif. DI area ini jugalah kita bisa mempelajari lubang hitam dengan lebih mendetil.

Tapi untuk mengamati area ini tidaklah mudah. Pengamatan dalam panjang gelombang tampak tidak dapat menembus blokade yang dibuat oleh debu antar bintang yang mengisi galaksi. Pandangan kita ke jantung sang galaksi ini terhalang. Kemampuan teknologi menjadi tantangan untuk dapat mengintip apa yang terjadi di sana. Untuk itu, digunakanlah panjang gelombang infra merah untuk menembus blokade debu antar bintang tersebut. Dan bintang-bintang di area pusat galaksi kemudian dijadikan partikel penguji untuk mengungkap apa yang ada di sana. Bintang-bintang itu diamati geraknya selama mengorbit Sagittarius A.

Hasil yang diperoleh sangat berguna untuk memahami lubang hitam itu sendiri contohnya dalam hal massa dan jarak. Dan tampaknya 95% massa yang mempengaruhi gerak bintang tersebut adalah lubang hitam. Karena itu, kecil kemungkinan penyebabnya adalah karena materi kelam lain. Tak pelak, hasil ini menjadi bukti empirik keberadaan lubang hitam supermasif, yang diperlihatkan oleh bintang yang megorbit pusat galaksi. Dalam pengamatan, diketahui adanya konsentrasi massa yang besar sekitar 4 juta massa Matahari yang diyakini sebagai lubang hitam yang berada pada jarak 27000 tahun cahaya.

Dari ke-28 bintang yang diamati, 6 di antaranya mengorbit lubang hitam dalam sebuah piringan dan bintang-bintang pada area paling dalam memiliki orbit acak. Bintang S2 menjadi satu-satunya bintang yang berhasil mengelilingi pusat Bima Sakti periode 16 tahun tersebut.

Untuk membangun citra jantung Bima Sakti dan menghitung orbit bintang individu, tim ini mempelajari bintang-bintang tersebut selama 16 tahun, dimulai pada tahun 1992 menggunakan kamera SHARP yang dipasang di New Technology Telescope 3,5 meter milik ESO di Observatorium La Silla, Chille. Observasi lainnya dibuat pada tahun 2002 dengan 2 instrumen yang ada di Very Large Telescope (VLT).

Walau penelitian ini berhasil membuka lembaran baru bagi pembelajaran lubang hitam dan kondisi area pusat galaksi dalam tingkat akurasi yang tinggi, namun masih banyak misteri yang belum terkuak di sana. Apalagi bintang-bintang tersebut juga masih sangat muda untuk melakukan perjalanan jauh. Diduga, bintang-bintang ini terbentuk pada orbitnya saat ini dibawah pengaruh gaya pasang surut lubang hitam.

Di masa depan, berbagai rancangan penelitian lanjutan akan dilakukan untuk mengintip monster di jantung Bima Sakti itu. Salah satunya dengan menggunakan teknologi dengan resolusi sudut yang lebih tinggi.

Sumber : ESO

Penemuan Planet Extra-Galaktik Pertama

ak ada batas akhir bagi akal para astronom. Mungkin inilah yang bisa kita katakan tentang penemuan baru ini.
Perubahan yang membawa pada penemuan panet baru di Galaksi Andromeda. Kredit  :TR

Perubahan yang membawa pada penemuan panet baru di Galaksi Andromeda. Kredit :TR

Saat ini seperti yang kita ketahui, ada lebih dari 300 exoplanet yang telah ditemukan dengan laju penemuan yang semakin besar dari waktu ke waktu. Dari semua yag telah ditemukan, baru satu planet yang terlihat secara langsung, Lainnya ditemukan dari efek yang ditimbulkan planet pada bintang induknya, yakni dengan melihat pada perubahan keerlangan sang bintang saat planet melewatinya. Jika demikian, tentunya kita harus bisa melihat bintang tersebut. Dengan kata lain, pengamatan hanya bisa dilakukan pada area lokal yakni di Bima Sakti.

Setidaknya itulah yang dilakukan para astronom, sampai saat ini.

Tapi, tidak demikian bagi Gabriele Ingroso dari National Institute of Nuclear Physics, Italia, beserta rekan-rekannya. Bagi mereka, ada kok cara untuk menemukan planet di galaksi lain. Caranya adalah dengan memanfaatkan fenomena lensa mikro dimana gravitasi satu bintang memfokuskan cahaya dari objek yang jauh ke Bumi.

Keuntungannya, lensa mikro bekerja sangat baik untuk objek jauh, sehingga bisa dikatakan sangat ideal untuk perburuan planet di galaksi lain. Secara teori, sangat memungkinkan untuk melihat objek berukuran Bumi dengan cara ini. Namun kekurangannya adalah, lensa mikro ini relatif cepat, dimana kejadian berlangsung maksimal hanya beberapa hari. Ini tentunya membuat pengamatan jadi lebih sulit untuk diuji.

Sulit untuk bisa mengamati bintang tunggal bahkan planet, Namun sejauh ini, para astronom berhasil mengenali sejumlah bintang di Andromeda melalui cara ini. Selain itu perencanaan untuk mengamati lebih banyak bintang pun tinggal hanya selangkah lagi.

Tapi, di tengah semua perencanaan itu, ada sebuah berita baru.

Cahaya dari salah satu bintang di Andromeda menunjukan perubahan yang menjadi petunjuk keberadaan objek lain yang mengorbit si bintang.

 M31, Galaksi Andromeda. Kredit : Robert Gendler / APOD

M31, Galaksi Andromeda. Kredit : Robert Gendler / APOD

Dan hasil analisis Ingrossso dan rekan-rekannya menunjukan kalau objek tersebut memiliki massa sekitar 6 massa Jupiter. Objek ini sedang menuju ke area klasifikasi sebagai bintang katai coklat. Namun ia juga masih berada dalam area sebagai sebuah planet.

Jika ia adalah planet, maka inilah planet extra-galaktik yang pertama.

Sumber : Technology Review

Usia Transisi Galaksi Dalam Gumpalan

Apa yang terjadi pada usia transisi galaksi dan lubang hitam akhirnya diketahui. Hal ini tentunya tak lepas dari data baru yang dihasilkan Observatorium Sinar-X Chandra dan teleskop lainnya. Penemuan ini membantu manusia untuk menyingkap asal mula gumpalan gas raksasa yang diamati berada di sekitar galaksi muda.

Citra yang disusun dalam pengamatan gumpalan di SSA22. Kredit : X-ray NASA/CXC/Durham Univ./D.Alexander et al.; Optical NASA/ESA/STScI/IoA/S.Chapman et al.; Lyman-alpha Optical NAOJ/Subaru/Tohoku Univ./T.Hayashino et al.; Infrared NASA/JPL-Caltech/Durham Univ./J.Geach et al.

Citra yang disusun dalam pengamatan gumpalan di SSA22. Kredit : X-ray NASA/CXC/Durham Univ./D.Alexander et al.; Optical NASA/ESA/STScI/IoA/S.Chapman et al.; Lyman-alpha Optical NAOJ/Subaru/Tohoku Univ./T.Hayashino et al.; Infrared NASA/JPL-Caltech/Durham Univ./J.Geach et al.

Sekitar satu dekade lalu, astronom berhasil menemukan waduk gas hidrogen yang besar yang mereka namakan “blobs” (gumpalan) – saat melakukan survey galaksi-galaksi muda pada jarak yang jauh. Gumpalan ini bersinar sengat terang pada cahaya optik, namun sumber energi yang membuatnya bercahaya beserta asal muasal dan sifatnya masih belum dapat diketahui.

Pengamatan panjang yang dilakukan Chandra berhasil mengidentifikasi sumber energi tersebut untuk pertama kalinya. Data sinar-X menunjukkan sumber kekuatan dari struktur kolosal ini yakni berasal dari lubang hitam supermasif yang sedang bertumbuh dan sebagiannya tersembunyi di balik lapisan tebal debu dan gas. Kembang api dari pembentukan bintang di dalam galaksi juga tampak memegang peranan penting, dan ini disingkap oleh teleskop Spitzer dan teleskop landas bumi.

Selama 10 tahun misteri gumpalan ini terkubur dari pandangan manusia, namun kini Chandra membantu kita untuk bisa melihat rahasia tersembunyi itu. Menurut James Geach dari Universitas Durham di UK, mereka kini bisa memiliki argumen penting tentang aturan apa yang ada di dalam pembentukan galaksi dan lubang hitam.

Galaksi diyakini terbentuk saat gas mengalir ke arah dalam di bawah pengaruh gaya gravitasi dan kemudian mengalami pendinginan oleh radiasi. Proses akan berhenti saat gas dipanaskan oleh radiasi dan mengalir keluar dari galaksi dan lubang hitam. Blob atau gumpalan merupakan tahap pertama atau tahap kedua dari proses pembentukan itu.

Berdasarkan data baru dan argumen teoretik, Geach dan rekan-rekannya menunjukan pemanasan gas oleh lubang hitam supermasif yang sedang tumbuh dan ledakan dari pembentukan bintang, yang diduga justru memberi kekuatan pada gumpalan tersebut. Implikasinya, gumpalan ini merupakan representasi dari tahapan dimana galaksi dan lubang hitam akan mulai berpindah ke tahap pertumbuhan yang cepat sebagai akibat proses pemanasan. Tahap ini sangat penting dalam evolusi galaksi dan lubang hitam, dan sudah sejak lama para astronom berusaha untuk memahami prosesnya.

Para astronom berhasil melihat tanda dalam usia transisi dari galaksi dan lubang hitam di dalam gumpalan yang mendorong kembali gas dan mencegahnya untuk pertumbuhan lebih lanjut. Galaksi masif akan melalui tahapan ini atau mereka akan membentuk terlalu banyak bintang dan segera berakhir masa hidupnya.

Ilustrasi galaksi dalam gumpalan. kredit : NASA/CXC/M.Weiss

Ilustrasi galaksi dalam gumpalan. kredit : NASA/CXC/M.Weiss

Chandra, Spitzer dan teleskop lainnya melakukan pengamatan pada 29 gumpalan dalam satu area raksasa di langit yang dikenal sebagai SSA22. Gumpalan dengan jarak beberapa ratus ribu tahun cahaya ini terlihat saat alam semesta baru berusia 2 milyar tahun atau 15% dari usia saat ini

Dalam 5 blobs / gumpalan, Chandra mengungkapkan tanda lubang hitam supermasif yang sedang bertumbuh – sebuah sumber titik dengan pancaran sinar-X yang sangat cerlang. Lubang hitam raksasa ini diperkirakan berada pada pusat kebanyakan galaksi yang ada saat ini termasuk di Bima Sakti. Pada 3 blobs lainnya juga ditemukan bukti yang mengarah pada kemungkinan keberadaan lubang hitam. Selain itu, data Spitzer menunjukkan beberapa galaksi juga didominasi oleh jumlah pembentukan bintang yang cukup banyak. Radiasi dan aliran yang sangat kuat dari lubang hitam dan pembakaran pada pembentukan bintang jika dikalkulasi menunjukan adanya energi yang cukup besar untuk menyalakan gas hidrogen di dalam gumpalan tempat mereka berada.

Untuk kasus dimana tanda keberadaan lubang hitam tidak terdeteksi, gumpalannya jauh lebih redup. Penelitian ini tak hanya berhasil menjelaskan dari mana sumber energi gumpalan melainkan juga memberi arahan akan masa depannya. Dalam skenario pemanasan, gas di dalam gumpalan tidak akan mendigin untuk membentuk bintang melainkan akan ditambahkan pada gas panas yang ditemukan di antara galaksi. SSA22 sendiri akan dapat berevolusi menjadi kluster galaksi masif.

Di awal, gumpalan ini akan memberi makan galaksi-galaksi yang ada. Namun yang terlihat sekarang seperti sisa, sehingga untuk bisa mengungkap lebih jauh lagi para astronom harus menjelajah waktu ke belakang untuk menangkap galaksi dan lubang hitam saat mereka membentuk si gumpalan.

Sumber : Chandra, Eureka Alert

Hilangnya Dua Lengan Bimasakti

Selama beberapa dekade astronom telah dibutakan oleh penampakan Bimasakti. Kok bisa? Bimasakti tidaklah tampak seperti apa yang kita bayangkan dan digambarkan selama ini. Tak bisa disalahkan karena kita tinggal di dalamnya, dan tak pernah keluar untuk melihat bagaimana bentuknya.

Sebuah citra baru dari Teleskop Spitzer milik NASA mengalirkan sebuah kenyataan lain atas struktur Bimasakti. Dari citra tersebut diketahui bimasakti hanya memiliki 2 lengan spiral bukannya 4 lengan spiral seperti yang kita ketahui sebelumnya.

Spitzer memberikan sebuah titik awal yang baru untuk kembali berpikir dan menelaah struktur Bimasakti, kata Robert Benjamin dari University of Wisconsin, Whitewater. Revisi peta Bimasakti akan dilakukan ke seluruh dunia dan sama seperti seorang pelaut yang tengah mengembara di lautan di jaman dahulu, mereka juga selalu memperbaharui peta mereka.

Sejak tahun 1950, astronom telah membuat peta Bimasakti. Model awal Bimasakti dibuat berdasarkan observasi radio terhadap gas di dalam galaksi. Hasilnya adalah struktur spiral dengan 4 bintang utama yang membentuk lengan, yakni Norma, Scutum-Centaurus, Sagittarius dan Perseus. Di dalam Bimasakti, selain lengan terdapat juga pita gas dan debu pada bagian pusat galaksi. Matahari di dalam Bimasakti berada di area lengan sebagian yang dikenal dengan nama lengan Orion atau Orion Spur, yang terletak di antara lengan Sagittarius dan Perseus.

Selama bertahun-tahun, peta seluruh Galaksi dibuat hanya berdasarkan studi pada satu bagian dari galaksi atau hanya dari satu metode. Dan ketika model dari berbagai kelompok peneliti dibandingkan mereka tidak pernah setuju satu sama lainnya. Sama seperti orang buta yang menginterpretasikan gajah dari berbagai sisi yang berbeda. Itulah kita. Para peneliti melihat Bimasakti dari sisi yang berbeda sehingga ketika dipertemukan tentunya hasilnya pun berbeda.

Namun di era tahun 1990, large infrared sky surveys, membawa sebuah nuansa baru. Survey langit besar-besaran pada panjang gelombang inframerah membawa revisi besar-besaran pada model galaksi termasuk ditemukannya pita besar di tengah Bimasakti yang berisi bintang-bintang. Cahaya inframerah memang bisa menembus debu sehingga teleskop yang bisa melakukan pengamatan pada panjang gelombang inframerah bisa memiliki penglihatan yang lebih baik diantara pusat galaksi yang penuh debu dan ramai dengan berbagai objek.

Di tahun 2005, Benjamin dan rekan-rekannya menggunakan detektor inframerah Spitzer untuk mendapatkan informasi lebih detail pada pita Galaksi. Mereka menemukan pita yang terentang dari pusat Galaksi ke arah luar tersebut lebih luas dan lebih panjang dibanding yang diperkirakan sebelumnya.

Citra inframerah terbaru dari Bimasakti menunjukan galaksi ini terentang 130 derajat di sepanjang langit dan satu derajat merentang dari bidang galaksi menuju ke atas dan bawah. Mosaik ini terdiri dari 800 000 potret yang diambil dan terisi oleh lebih dari 110 juta bintang.

Mosaik 80000 citra Bimasakti yang membentuk citra utuh Galaksi Bimasakti. Kredit gambar: NASA Spitzer
Mosaik 80000 citra Bimasakti yang membentuk citra utuh Galaksi Bimasakti. Kredit gambar: NASA Spitzer

Benjamin juga mengembangkan piranti lunak yang bisa menghitung bintang, dan mengukur kerapatan bintang. Perhitungan yang ia lakukan pada lengan Scutum-Centaurus menunjukan peningkatan jumlah bintang dibanding yang seharunya ada di sebuah lengan spiral. Sementara pengukuran pada lengan Sagittarius dan Norma tidak menunjukan adanya peningkatan jumlah bintang. Pada lengan ke-4 yakni lengan Perseus yang menyelubungi bagian terluar Bimasakti tidak dapat dilihat dalam citra terbaru yang diambil Spitzer.

Penemuan ini menunjukan galaksi Bimasakti memiliki 2 lengan spiral utama, struktur umum galaksi dengan sebuah pita. Lengan utama itu adalah lengan Scutum-Centaurus dan Perseus, yang memiliki kerapatan terbesar dari bintang muda dan terang serta bintang tua seperti bintang raksasa merah. Dua lengan lainnya yakni lengan Sagittarius dan Norma dikategorikan sebagai lengan minor yang terdiri dari gas dan bintang-bintang muda. Menurut Benjamin, kedua lengan utama di Bimasakti tersebut terhubung dengan bagian terdekat dan terjauh dari pita utamanya. Dengan demikian lengan itu bisa disambung dengan pita utamanya seperti sedang memasang puzzle, sehingga untuk pertama kalinya bisa dipetakan struktur, posisi dan lebar lengan tersebut.

Penemuan sebelumnya dalam observasi inframerah memberi petunjuk mengenai kedua lengan tersebut. Namun hasilnya tidak begitu jelas karena posisi dan lebar lengan masih tidak dapat diketahui. Meskipun lengan galaksi tampak sebagai fitur yang lengkapp, namun pada kenyataannya bintang di dalamnya secara konstan terus bergerak keluar dan masuk di dalam lengan tersebut. Hal ini disebabkan oleh pergerakan bintang-bintang tersebut saat mengorbit (mengitari) pusat galaksi.

Matahari pun sekali waktu akan berada pada lengan yang berbeda. Dan sejak ia terbentuk 4 milyar tahun yang lalu, Matahari telah mengelilingi galaksi ini sebanyak 16 kali.

Sumber : Spitzer Space Telescope

Massa Minimum Galaksi Jadi Titik Terang Mengenal Materi Kelam

Analisis cahaya dari sebuah galaksi redup yang mengorbit Bima Sakti, para peneliti dari UC Irvine berhasil menemukan massa minimum galaksi di alam semesta yakni hanya 10 juta kali massa Matahari. Massa sekecil ini diperkirakan merupakan komponen terkecil dari “komponen penyusun” materi misterius dan tak terlihat di alam semesta, yang kita kenal sebagai dark matter atau materi kelam. Bintang yang terbentuk dalam komponen penyusun tersebut akan berkumpul bersama dan kemudian menjadi galaksi.

Satelit galaksi pada jarak 500000 tahun cahaya dari Bima Sakti yang diteliti para peneliti dari UCI untuk memahami materi kelam. Kredit gambar : UCI
Satelit galaksi pada jarak 500000 tahun cahaya dari Bima Sakti yang diteliti para peneliti dari UCI untuk memahami materi kelam. Kredit gambar : UCI

Sampai saat ini para peneliti hanya mengetahui sedikit informasi dari komponen mikroskopik materi kelam, meskipun materi tersebut dipkerkirakan sebanyak 5/6 dari seluruh materi di alam semesta.

Dengan mengetahui massa minimum galaksi, maka sifat-sifat materi kelam akan dapat diketahui. Hal ini esensial dalam mempelajari bagaimana alam semesta dan kehidupan jadi seperti saat ini. Materi kelam dalam keberadaannya ikut mengendalikan pertumbuhan struktur alam semesta. Tanpa materi kelam, galaksi seperti Bima Sakti tak akan pernah ada. Gravitasi dari materi kelam inilah yang menarik materi normal dan menyebabkan terbentuknya galaksi. Diduga, galaksi kecil yang ada di alam semesta juga mengalami penyatuan sepanjang waktu dan membentuk galaksi seperti Bima Sakti.

Galaksi terkecil yang diketahui atau yang sering disebut galaksi katai, memiliki kecerlangan yang besar dari 1000 kali luminositas Matahari sampai dengan 10 juta luminositas Matahari. Setidaknya ada 22 dari galaksi katai yang diketahui mengorbit Bima Sakti. Para peneliti di UCI mempelejari 18 di antaranya menggunakan data dari Teleskop Keck di Hawaii dan Teleskop Magellan di Chile. Tujuan penelitian ini untuk menghitung massa galaksi katai tersebut. Analisa cahaya bintang di tiap galaksi memberikan informasi kecepatan gerak bintang dan dari kecepatan tersebut bisa diketahui massa galaksi.

Pada awalnya diharapkan galaksi yang diteliti memiliki variasi massa dengan galaksi paling terang memiliki massa terbesar dan galaksi redup merupakan galaksi yang massanya kecil. Namun ternyata seluruh galaksi katai tersebut memiliki massa yang sama, 10 juta massa Matahari. Penemuan ini menggunakan analogi dimana manusia yang memainka peran di dalam materi kelam.

Bayangkan jika kita adalah alien yang sedang terbang melintasi BUmi dan mencoba mengidentifikasi area penduduk dari konsentrasi cahaya di malam hari. Tentunya dari terangnya cahaya, kita akan memberi sebuah kesimpulan awal kalo ternyata Los Angeles lebih banyak penghuninya dari Mumbai. Sayangnya, dalam kasus galaksi katai ini, yang ditemukan justru lebih ekstrim, dan memiliki kepadatan penduduk yang sama yakni sekitar 10 juta.

Karena galaksi katai sebagian besar berisi materi kelam, maka bisa dikatakan perbandingan materi kelam dengan materi normal hampir sebesar 10 000 : 1. Massa minimum yang ditemukan ini mengungkap sifat dasar dari materi kelam. Penemuan ini membantu para peneliti untuk memahami partikel yang membentuk materi kelam dan menmberikan informasi bagaimana galaksi terbentuk.

Menurut para peneliti, kumpulan materi kelam bisa saja tidak memiliki bintang di dalamnya. Dan yang bisa dideteksi sampai saat ini hanyalah materi kelam yang di dalamnya terdapat bintang.

Sumber : University of California, Irvine

Mengungkap Rahasia Hanny’s Voorwerp

Observasi terbaru yang dilakukan dengan menggunakan radio teleskop akhirnya berhasil menyingkapkan sifat dari objek ganjil yang dikenal sebagai “Hanny’s voorwerp” (SDSS J094103.80+344334.2). Voorwerp ditemukan oleh Hanny van Arkel, seorang guru Belanda yang juga sukarelawan dari proyek “Galaxy Zoo”.

Saat melakukan studi terhadap ratusan citra, Hanny melihat keberadaan awan gas galaktik hijau yang tidak beraturan, pada jarak 60000 tahun cahaya dari galaksi terdekat, IC2497. Objek ini membuat para astronom mencari tahu selama setahun ini dan menemukan awan ini luar biasa besar dan gas yang ada di dalamnya berada pada kondisi panas yang ekstrim >15000 Celsius. Yang jadi paradoks, dalam awan ini tidak terdapat bintang.

Citra pengamatan voorwerp dan IC 2497. Kredit : ASTRON.nl
Citra pengamatan voorwerp dan IC 2497. Kredit : ASTRON.nl

Tim internasional yang dipimpin oleh Prof. Mike Garret (ASTRON/Leiden), dan juga Hanny van Arkel mengamati IC2497 dan Voorwerp dengan Westerbork Synthesis Radio Telescope (WSRT) dan e-VLBI array dimana WSRT juga turut berpartisipasi di dalamnya.

Citra yang dihasilkan dari data yang ada, menunjukan adanya semburan partikel berenergi tinggi yang dihasilkan oleh lubang hitam masif di pusat IC2497. Semburan tersebut tampak memancar dari lubang hitam dan kemudian menyapu bersih jalur yang dipenuhi medium antar bintang yang rapat di IC 2497 menuju Hanny’s Voorwerp”. Saluran yang bersih inilah yang membuat cahaya dari pancaran sinar optik dan ultraviolet yang terkait dengan lubang hitam bisa menguak sebagian kecil dari awan gas raksasa yang berada di sekeliling galaksi. Pancaran sinar optik dan ultraviolet memanaskan dan mengionisasi awan gas menciptakan fenomena yang dikenal sebgai Hanny’s Voorwerp.

Pertanyaan lain yang muncul adalah darimana semua gas hidrogen itu berasal? Ada bermacam-macam gas diluar sana dan observasi yang dilakukan WRST mendeteksi aliran besar gas yang membentang seluas ratusan ribu tahun cahaya. Menurut Dr. Gyula Józsa, salah satu anggota tim peneliti, massa total awan gas tersebut mencapai 50000 juta kali massa Matahari.

Pendapat lain datang dari Dr. Tom Osterloo. Ia mengaku pernah melihat fenomena ini sebelumnya. Ciri-ciri yang tampak merupakan ciri dari sistem yang saling berinteraksi. Pada sistem semacam ini diperkirakan gas muncul dari interaksi pasang surut antara IC 2497 dan galaksi lain beerapa ratus juta tahun lalu. Ia juga menyatakan bahwa aliran gas tersebut berhenti 300 ribu tahun cahaya ke arah barat IC 2497. Bukti yang ada saat ini mengarah pada kelompok galaksi yang sepertinya menadi tersangka terjadinya kecelakaan kosmik tersebut.

Penelitian pada voorwerp sendiri menunjukan banyak kemajuan dan di masa depan akan ada lebih banyak rahasia yang diungkapkan dari voorwerp.

Sumber : ASTRON

Air Terjauh di Galaksi Asing

Air ternyata tidak hanya dimiliki bumi. Komponen yang satu ini tersebar di alam semesta dalam berbagai bentuk, baik cair, padat, maupun gas. Pencarian air selalu menjadi hal yang menarik, karena air senantiasa diidentikkan dengan kehidupan. Nun jauh di salah satu sudut alam semesta, para astronom berhasil menemukan air terjauh yang pernah terlihat. Air tersebut berada di sebuah galaksi yang jaraknya lebih dari 11 milyar tahun cahaya dari Bumi. Sebelumnya, air paling jauh yang berhasil ditemukan berada di galaksi yang berjarak 7 milyar tahun cahaya dari Bumi.

Tanda keberadaan air berhasil ditemukan menggunakan teleskop radio raksasa berdiameter 100 meter di Effelsberg, Jerman, dan Very Large Array milik National Science Foundation di New Mexico.

Galaksi berair yang dikenal dengan nama MG J0414+0534, memiliki quasar — lubang hitam supermasif yang memancarkan cahaya yang sangat terang — di intinya. Pada area di dekat inti, molekul air bertindak sebagai maser (Microwave Amplification by Stimulation Emission of Radiation) yang sama kuat dengan laser, dan menguatkan gelombang radio pada frekuensi tertentu. Penemuan ini mengindikasikan keberadaan maser air raksasa lebih umum terdapat pada saat alam semesta dini dibanding sekarang. Pengamatan yang dilakukan sekarang berhasil melihat kondisi MG J0414+0534 saat alam semesta masih berusia 1/6 dari usia saat ini.

Pada galaksi yang jaraknya sangat jauh, bahkan penguatan gelombang radio terkuat yang dlakukan oleh maser tidak cukup kuat untuk bisa dideteksi teleskop radio. Namun, para ilmuwan justru mendapat bantuan dari alam dalam bentuk galaksi lain yang berjarak hampir 8 milyar tahun cahaya serta berada di garis pengamatan MG J0414+0534 dan Bumi. Gravitasi galaksi tersebut bertindak sebagai lensa yang membuat galaksi jauh lebih terang dan pancaran molekul air jadi tampak oleh teleskop radio.

Sinyal keberadaan air di jarak yang sangat jauh ini bisa diketahui dengan bantuan lensa gravitasi. Teleskop kosmik tersebut mereduksi waktu yang dibutuhkan untuk dapat mendeteksi air dalam faktor sekitar 1000.

Sinyal air pertama kali dideteksi oleh teleskop Effelsberg dan kemudian digunakan VLA untuk mempertajam kemampuan pencitraan yang bisa mengkonfirmasi asal galaksinya. Keberadaan lensa gravitasi memberikan 4 citra MG J0414+0534 yang terlihat dari Bumi. Dengan VLA, para peneliti bisa menemukan gelombang radio yang spesifik menyatakan keberadaan air pada 2 citra terang yang dihasilkan. Dua citra lainnya terlampau lemah untuk bisa dideteksi keberadaan sinyal airnya. Frekuensi yang dipancarkan molekul air merupakan pergeseran Doppler akibat pengembangan alam semesta dari 2,2 GHx – 6,1 GHz.

Air yang bertindak sebagai maser sudah ditemukan pada sejumlah galaksi yang jaraknya dekat. Biasanya, air diperkirakan berada dalam piringan molekul yang mengorbit lubang hitam supermasif pada jarak yang sangat dekat di inti galaksi. Pancaran gelombang radio yang mengalami penguatan biasanya akan teramati saat piringan tampak dari samping dan terlihat tepiannya. Namun, ternyata orientasi galaksi MG J0414+0534 saling berhadapan dengan Bumi. Dengan demikian, molekul air yang kita lihat dalam maser bukan di dalam piringan melainkan dalam materi yang terlontar sebagai akibat lontaran gravitasi lubang hitam yang diorbitnya. Materi yang terlontar tersebut bergerak dalam jet super cepat.

Kayu Baru Dalam Api Yang Hampir Padam

Astronom di Universitas Bonn berhasil mendapatkan hubungan antara lubang hitam di pusat gugus galaksi dan gas disekelilingnya, yang bertindak sebagai makanan.

Gugus Galaksi NGC507 dalam 3 panjang gelombang. kredit : R. Mittal, Bonn University, CXO, VLA

Gugus Galaksi NGC507 dalam 3 panjang gelombang. kredit : R. Mittal, Bonn University, CXO, VLA

Lubang hitam merupakan terminologi yang diberikan pada objek kosmik yang memiliki gaya gravitasu sangat kuat yang menarik semua yang ada disekelilingnya dengan cepat. Bahkan cahaya pun tak dapat lepas dari tarikannya. Fenomena ini memang diperkirakan bisa ditemui di pusat semua galaksi utama dan lubang hitam sendiri bervariasi dalam ukuran. Bisa dikatakan seperti petinju, lubang hitam juga memiliki kelas berat yang berbeda. Lubang hitam supermasif memiliki massa milyaran sampai jutaan kali lebih besar dari Matahari.

Si lubang hitam supermasif ini tak selalu aktif, melainkan sebagian besar lubang hitam justru “tampak menyala dan menjauh”,” kata Dr. Thomas H. Reiprich dari Argelander Institute for Astronomy di Bonn.

Dengan mempelajari radiasi di sekeliling lubang hitam, para astronom dapat menyimpulkan situasi makanan mereka. Radiasi diperoleh dari materi yang perlahan-lahan dihisap oleh lubang hitam. Makanan ini sepenuhnya diserap oleh benda kosmik yang begitu rakus dalam bentuk gas hidrogen.

Bagi lubang hitam, gas hanya cocok dimakan jika ia cukup dingin, sama seperti pola makan dalam kehidupan manusia. Partikel gas panas bergerak terlalu cepat bagi lubang hitam sehingga sulit bagi gas panas tersebut untuk berada cukup dekat sehingga bisa ditarik ke dalam lubang hitam.

Agar lubang hitam bisa makan, campuran gas yang ada harus lebih dahulu mendingin. Dan proses pendinginan ini memakan waktu yang berbeda-beda. Satu milyar tahun merupakan waktu terpendek berdasarkan standar kosmik untuk proses pendinginan tersebut. Lubang hitam di pusat gugus galaksi yang gasnya mendingin lebih cepat akan menerima gas berlimpah yang cocok untuk dimakan. Pada kondisi ini si lubang hitam akan jadi sangat aktif.

Gas Dingin Sebagai Bahan Bakar
Sebenarnya kondisi pusat lubang hitam di gugus galaksi yang aktif jika ada gas yang cukup banyak sudah dipostulatkan oleh para ilmuwan. Pada penelitian yang dikerjakan Thomas H. Reiprich dan rekan-rekannya, mereka memoles bukti yang ada. Jika penelitian awal mengidentifikasi porsi yang cukup tinggi untuk kasus tersebut, maka penelitian yang dilakukan Reiprich ini menunjukan prosentasenya bukan cuma 70% tapi bisa dinyatakan terjadi pada semua kasus.

Menurut Reiprich, seluruh gugus galaksi yang mendingin dengan cepat akan memiliki gas berlimpah di bagian dalamnya, menguatkan kembali lubang hitam supermasif. Seperti layaknya batang kayu yang dilemparkan ke dalam pembakaran kayu yang hampir padam. Dengan kata lain, lubang hitam akan benar-benar beraksi dengan baik jika ia berada dalam lingkungan yang tepat.

Sebagai bagian dari penelitian ini, para ilmuwan di Bonn juga melakukan pengukuran gelombang radio dari citra sinar-X lebih dari 60 gugus galaksi. Dari olah citra ini mereka bisa mengukur fenomena ini lebih dekat lagi dibanding penelitian sebelumnya. Dengan menggunakan sinar-X, para peneliti ini berhasil menentukan gugus galaksi mana saja yang di intinya terdapat gas yang bisa menjadi makanan bagi lubang hitam. Dan dari data radio, para peneliti di Bonn berhasil menganalisa aktivitas lubang hitam supermasif.

Sumber : Bonn University

Saturday, September 5, 2009


Sejumlah astronom menemukan fenomena yang tampaknya merupakan aksi bunuh diri planet karena berada amat dekat dengan bintangnya dan menimbulkan gelombang dahsyat.

Planet tersebut adalah WASP-18b yang telah berjuta tahun hidup dan ditemukan Coel Hellier, seorang profesor astrofisika di Keele University di Inggris. Hellier menyampaikan laporannya pada jurnal ilmiah The Nature, Kamis (27/8). ”Dengan menciptakan gelombang itu, dia menghancurkan dirinya sendiri,” ujar Hellier.

Bintang planet tersebut adalah WASP-18. Planet itu mengitari bintang dalam konstelasi Phoenix dan berjarak sekitar 325 tahun cahaya dari Bumi (satu tahun cahaya sekitar 9,3 triliun kilometer). Itu berarti dia ada di kawasan tetangga galaksi kita.

Jarak planet tersebut dengan bintangnya adalah sekitar 1/50 jarak Bumi dengan Matahari. Ukuran planet tersebut sekitar 10 kali ukuran Planet Yupiter. Gelombang antara planet tersebut dan bintangnya bisa dianalogikan dengan relasi Bulan dan Bumi yang bisa membentuk dua kali gelombang. Sejauh ini para astronom telah menemukan lebih dari 370 planet di luar sistem Matahari. Namun, penemuan planet bunuh diri amat jarang terjadi

Galaksi Andromeda membesar


Galaksi Andromeda tampaknya membesar dengan menelan bintang-bintang dari galaksi lain, demikian hasil penelitian.

Ketika sebuah tim ilmuwan memetakan Andromeda, mereka menemukan bintang-bintang yang mereka katakan merupakan "sisa-sisa galaksi kerdil". Para Astronom melaporkan temuan mereka di jurnal Nature.

Mengonsumsi bintang-bintang sudah pernah diperkirakan sebelumnya namun tim survei ini menyediakan rincian gambar untuk menunjukkan hal itu terjadi. Gambar itu menunjukan "model hirarkis" pembentukan galaksi sedang berjalan.

Model itu memprediksi bahwa galaksi besar akan dikelilingi sias-sisa galaksi lebih kecil yang mereka konsumsi. Kalangan ilmuwan memetakan pinggiran Andromeda secara rinci untuk pertama kali.

Pauline Barmby, astronom dari Universitas Western Ontario yang terlibat dalam studi ini, mengatakan kepada BBC bahwa pola orbit bintang itu mengungkapkan asalnya. "Andromeda begitu dekat sehingga kita dapat memetakan semua bintang," katanya. Andromeda, yang diperkirakan jauhnya 1,5 juta tahun cahaya dari bumi kini terus membesar.

Monday, August 31, 2009

Piringan tersebar

Hitam: tersebar; biru: klasik; hijau: resonan
Eris dan satelitnya Dysnomia

Piringan tersebar menindih sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Obyek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan Obyek piringan tersebar memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekleptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai Obyek Sabuk Kuiper Tersebar [56]

[sunting] Eris

Eris (rata-rata 68 SA) adalah obyek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet,karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu bulan Dysnomia.[57] Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38.2 SA (mirip jarak Pluto ke /matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.

[sunting] Daerah terjauh

Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin matahari dan gravitasi matahari. Batasan terjauh pengaruh angin matahari kira kira berjarak empat kali jarak Pluto dan matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.

[sunting] Heliopause

Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruangantarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari matahari pada daerah lawan angin dan sekitar 200 SA dari matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperki ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin matahari berhenti dan ruang antar bintang bermula.

Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan matahari seiring edarannya berkeliling di Bima Sakti.

Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin matahari. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep "Vision Mission" yang akan khusus mengirimkan satelit penjajak ke heliosfer.

[sunting] Awan Oort

Gambaran seorang artis tentang Awan Oort

Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilion-trillion obyek-obyek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50,000 (sekitar 1 tahun cahaya) sampai sejauh 100,000 (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Obyek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.[58][59]

[sunting] Sedna

Foto teleskop Sedna

90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu obyek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh untuk dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah obyek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3,420 thaun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui process yang mirip, meski jauh lebih dekat ke matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatanya masih harus ditentukan dengan pasti.

[sunting] Batasan-batasan

Banyak hal dari Tata Surya kita masih belum diketahui. Medan gravitasi matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius awan Oort, di tangan yang lain, tidak lebih besar dari 50.000 SA.[60] Sekalipun setelah penemuan Sedna, daera antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dibilang belum dipetakan. Selain itu juga ada studi yang berjalan mempelajari daerah antara Merkurius dan matahari.[61] Obyek-obyek mungkin masih akan ditemukan di daerah yang belum dipetakan.

[sunting] Dimensi

Perbandingan beberapa ukuran penting planet-planet:

Karakteristik Merkurius Venus Bumi Mars Jupiter Saturnus Uranus Neptunus
Jarak orbit (juta km) (SA) 57,91 (0,39) 108,21 (0,72) 149,60 (1,00) 227,94 (1,52) 778,41 (5,20) 1.426,72 (9,54) 2.870,97 (19,19) 4.498,25 (30,07)
Waktu edaran (tahun) 0,24 (88 hari) 0,62 (224 hari) 1,00 1,88 11,86 29,45 84,02 164,79
Jangka rotasi 58,65 hari 243,02 hari 23 jam 56 menit 24 jam 37 menit 9 jam 55 menit 10 jam 47 menit 17 jam 14 menit 16 jam 7 menit
Eksentrisitas edaran 0,206 0,007 0,017 0,093 0,048 0,054 0,047 0,009
Sudut inklinasi orbit (°) 7,00 3,39 0,00 1,85 1,31 2,48 0,77 1,77
Sudut inklinasi ekuator terhadap orbit (°) 0,00 177,36 23,45 25,19 3,12 26,73 97,86 29,58
Diameter ekuator (km) 4.879 12.104 12.756 6.805 142.984 120.536 51.118 49.528
Massa (dibanding Bumi) 0,06 0,81 1,00 0,15 317,8 95,2 14,5 17,1
Kepadatan menengah (g/cm³) 5,43 5,24 5,52 3,93 1,33 0,69 1,27 1,64
Suhu permukaan
min.
menengah
maks.

-173 °C
+167 °C
+427 °C

+437 °C
+464 °C
+497 °C

-89 °C
+15 °C
+58 °C

-133 °C
-55 °C
+27 °C


-108 °C


-139 °C


-197 °C


-201 °C

[sunting] Konteks galaksi

Lokasi Tata Surya di dalam galaksi Bima Sakti
Lukisan artist dari Gelembung Lokal

Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[62] Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion.[63] Letak Matahari berjarak antara 25,000 dan 28,000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2200 kilometer per detik. Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.[64] Apex matahari, arah jalur matahari di ruang semesta, dekat letaknya dengan konstelasi Herkules terarah pada posisi akhir bintang Vega.[65]

Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.[66] Tata Surya juga terletak jauh dari daerah padat bintang di pusak galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi. Intensitas radiasi dari pusat galaksi juga mempengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernova telah mempengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet. [67]

[sunting] Daerah lingkungan sekitar

Daerah lingkuan terdekat sekitar Tata Surya dinamai Awan Antarbintang Lokal. Daerah ini berawan padat, yang merupakan bagian daerah diketahui gersang bernama Gelembung Lokal. Daerah Gelembung Lokal ini berbentuk mirip jam pasir pada medium antarbintang dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.[68]

Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya. Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Bernad (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa dua kali massa matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).[69] Bintang tunggal terdekat yang mirip matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat matahari, tetapi kecemerlangannya (luminositas) hanya 60%.[70] Planet luar Tata Surya terdekat dari matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan , bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.[71]

Tata Surya bagian luar

Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk Centaurs, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung volatiles yang lebih tinggi (contoh: air, amonia, metan, yang sering disebut es dalam peristilahan ilmu keplanetan) dibandingkan planet batuan di bagian dalam Tata Surya.

[sunting] Planet-planet luar

Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala

Keempat planet luar, atau gas raksasa (yang disebut juga planet jovian), secara keseluruhan mencakup 99 persen massa yang mengorbit matahari. Jupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[39] Keempat gas raksasa ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.

[sunting] Yupiter

Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Jupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Jupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[40] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.

[sunting] Saturnus

Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Jupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Jupiter, planet ini hanya seberat kurang dari sepertiga Jupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[41] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.

[sunting] Uranus

Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[42] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.

[sunting] Neptunus

Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Jupiter atau Saturnus.[43] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[44] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.

[sunting] Komet

Komet Hale-Bopp

Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.

Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[45] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[46] Komet tua yang bahan volatilesnya telah habis karena panas matahari sering dikategorikan sebagai asteroid.[47]

[sunting] Centaurs

Centaurs adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[48] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati matahari.[49] Beberapa astronom mengklasifikasikan Centaurs sebagai obyek sabuk Kuiper sebaran-ke-dalam, seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[50]

[sunting] Daerah trans-Neptunus

Plot seluruh obyek sabuk Kuiper
Diagram yang menunjukkan pembagian sabuk Kuiper

Daerah yang terletak jauh melebihi Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.

[sunting] Sabuk Kuiper

Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari badan Tata Surya kecil. Meski demikian, obyek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 obyek sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total sabuk Kuiper hanya sepersepuluh massa bumi.[51] Banyak obyek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.

Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari obyek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[52] Anggota dari sabuk klassik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [53]

[sunting] Pluto dan Charon
Pluto dan ketiga bulannya

Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah obyek terbesar sejauh ini di sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang ke sembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.

Tidak jelas apakah Charon, bulan Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitas di atas permukaanya, yang membuat Pluto-Charon sebuah sistem ganda. Dua bulan yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari matahari dua kali untuk setiap tiga edaran Neptunus. Obyek sabuk Kuiper yang orbitnya memiliki resonansi yang same disebut plutinos.[54]

[sunting] Haumea dan Makemake

Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua obyek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah obyek berbentuk telur dan memiliki dua bulan. Makemake adalah obyek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [55] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Obyek sabuk Kuiper klasik.